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Introduction 
Air pollution refers to the presence of pollutants in the air which are detrimental to human health and the 
environment. Most air pollution in the United States is due to automobile traffic, but other sources of air 
pollution include power plants, agricultural land, cities, wildfires, and volcanoes.  Poor air quality poses serious 
economic, social, environmental, and health consequences. In 2019, 99% of the world’s population was living in 
places where air quality guidelines levels were not met (WHO, 2021). In the United States, about 111 million 
Americans - 35% of the population - live in counties with unhealthy air (Peltier, 2019). In 2016, 4.2 million deaths 
occurred worldwide due to ambient air pollution (WHO, 2021). Air pollution is also now empirically linked to 
negative psychological and societal outcomes such as increasing depression, impairing cognitive abilities, hurting 
worker productivity, and exacerbating criminal behavior (Church, 2020). 

The EPA is required by the U.S. Clean Air Act (CAA) to establish National Ambient Air Quality Standards (NAAQS) 
for six common air pollutants that are known as "criteria pollutants". They are termed criteria because their 
thresholds are based on human health (primary standards) or environmental criteria (secondary standards) 
including visibility impairment, climate effects and material effects. The pollutants are particulate matter (PM), 
ground-level ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2) and lead. Particle 
pollution and ground-level ozone are the most prevalent health threats.  

According to the EPA’s air quality standards, any PM2.5 level below 12 µg/m³ and 15 µg/m³ is considered good air 
quality for primary and secondary standards, respectively (EPA, 2022). Specifically, PM2.5 can pose extreme 
health threats because these tiny particles matriculate deep into human lungs. Exposure to PM2.5 has been linked 
to an increased risk of cardiovascular disease (Jiang et al., 2016). Furthermore, previous research has confirmed 
that negative health outcomes due to PM2.5 exposure can result in premature death (Cohen et al., 2017).  

Past studies have identified variables like traffic density as influences on the distribution of PM2.5. In fact, exhaust 
from diesel-powered vehicles has been determined as the primary cause of roadway pollutant concentrations 
(Fruin et al., 2008). Several studies have confirmed this effect of traffic on air pollution levels (Cummings et al., 
2021; deSouza et al., 2020; Apte et al., 2017). Other studies have also shown that land cover (Shakya et al., 2019), 
building characteristics (Li et al., 2019), and airport proximity (Hudda et al., 2014) are also strong predictors of 
pollutant concentrations in urban areas. 

While air pollution affects everyone, people who live in urban areas like Chicago suffer the most exposure to air 
pollution as compared to those living in more rural areas. Furthermore, the increased burden of air pollution on 
large cities is not distributed equally. Data from Microsoft shows that certain Chicago communities such as Little 
Village, Austin, Englewood, Auburn Gresham, Irving Park, and Avondale have the highest levels of pollutant 
particulate matter due to heavier traffic and closer proximity to industrial areas (Gupta et al., 2022). 

To create effective mitigation plans that accurately reflect the unequal distribution of pollution, air quality 
monitoring is crucial. Air quality monitoring measurements can reveal hotspots, or areas with the most pollution, 



 

2 
 

by measuring pollutant concentrations over set periods of time in different locations. Commonly used forms of 
data collection for air quality monitoring are stationary and mobile systems. Stationary air quality monitoring 
systems provide data from fixed locations. Stationary systems are used most often because of their high 
accuracy and ability to monitor long-term air quality. On the other hand, mobile monitoring which typically refers 
to collecting air quality data in real-time while moving whether by vehicle, foot, or other method of 
transportation, is a particularly reliable, low-cost option that can acquire data at a high spatial resolution (i.e., 
hyperlocal). They can characterize smaller-scale variability, and measure a widespread area. The major air quality 
measurement programs in the U.S. include those run by the EPA, National Parks Service, NASA, NOAA, and the 
National Weather Service. In Chicago, prominent air quality monitoring includes data collection by Microsoft, 
the Chicago Department of Public Health (CDPH), and the EPA. However, of the U.S.-based studies that solely 
use mobile air quality monitoring (Cummings et al., 2021; Shakya et al., 2019; Cabral et al., 2021; deSouza et al., 
2020; Anjomshoaa et al., 2018; Hankey and Marshall, 2015; Apte et al., 2017; Fruin et al., 2008; Hudda et al., 2014; 
Chen et al., 2022), almost all are vehicle-based which is less accessible and requires more resources, and they 
have short data collection periods of less than a year.  

The temporal variability and long-term patterns of air pollution are perfectly captured by stationary sensors. 
However, due to the complexity of urban air pollution and the significant spatial variability it exhibits within 
communities, a vast number of stationary air quality sensors dispersed across the community would be 
necessary to map the fine resolution spatial variability of air pollution. As a result of this shortcoming, mobile 
monitoring can be used to measures pollution levels on accessible road networks in metropolitan communities, 
to complement stationary monitoring methods (Chen et al., 2022). Aclima (2020) demonstrated that from one 
block to another, air pollution can fluctuate by six to eight times. According to their findings, mobile air quality 
monitoring offers hyperlocal spatial representativeness that exhibits significant fluctuations in pollutant 
concentrations at distances between 100 and 300 meters.  

When compared to stationary sensors, the mobile sampling system suffers from the limited time spent at each 
location visited during the data gathering procedure. Due to regular or sporadic emission plumes from adjacent 
sources, mobile measurement data may contain strong concentration spikes within a few seconds. 
Understanding the number of repeat visits that may be needed to attain a meaningful approximation of the 
spatial air quality pattern in a particular area is a key question in relation to mobile monitoring. Few studies have 
attempted to address this subject, and the challenge is that the number of repeats needed can vary depending 
on the location characteristics and the target air pollution variable. Chen et al. (2022) argues the local variability 
of air pollution can be a dependent on the type of the pollution, spatiotemporal dimensions (location, and time 
including hours, weekday, and season) of the measurement, the deviation from the central tendency measures, 
and the local climatology. 

The present study seeks to enhance our understanding of hyperlocal air quality in Chicago by employing two 
data sets specific to the city. The first source is data from stationary sensors in Chicago, under the Project Eclipse 
Network, which is owned and operated by Microsoft. Since July 2021, this network has been continuously 
monitoring air quality in Chicago for three pollutants: PM2.5, O3, and NO2. The network consists of over 100 
stationary sensors. The second source is ELPC mobile monitoring data collected using AirBeam devices. These 
devices are low-cost, open-source, handheld particulate matter monitors that ELPC has been using to measure 
short-term PM2.5 exposure in Chicago since 2017. The data collected from Microsoft stations aids in capturing 
the temporal variability of air quality in Chicago across various time scales. This information can subsequently 
be used to efficiently implement a comprehensive mobile monitoring system with AirBeam devices and provide 
recommendations for future mobile monitoring endeavors. 
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Data 

ELPC Mobile Air Quality Monitoring Project 

The AirBeam is a low-cost, open-source, handheld air monitor that ELPC has been utilizing to measure short-
term PM2.5 exposure since 2017. Despite being inexpensive, the measures are in good agreement with USEPA 
federal regulatory monitors (FRM). The AirBeam measures the amounts of PM2.5 by taking air samples at 1 HZ (1 
per second intervals). One may view the particulate matter levels in real time as they move throughout the city 
thanks to the concentrations being transmitted immediately to a mobile device via Bluetooth.  

In 2017, ELPC initiated a community science air quality monitoring project and partnered with neighborhood 
residents, community organizations, and students, to conduct air quality monitoring, collecting and mapping 
small particulate levels. Every spring and summer, ELPC collaborated with neighborhood-based organizations to 
train locals in tracking air pollution, recognizing their exposure to PM2.5, and making better health-related 
decisions. While citywide monitoring was carried out, ELPC concentrated on gathering information on the west, 
south, and southeast portions of the city. This was mostly based on earlier studies on the city of Chicago, where 
industrial districts, high traffic corridors, and asthma rates suggested that some locations should be given top 
priority because they are more likely to be exposed to PM2.5. 

While relying primarily on walking-based mobile monitoring, over 14 million data points were collected between 
2017 and 2021 by ELPC and its community partners, and 10.47 (an equivalent of 2905.5 hours or 121 full days of 
data collection) million were within the city limits of Chicago. The temporal breakdown of the collected data is 
displayed in figures 1 to 3. The figures show that the majority of the data was collected in July, and that the hourly 
range with the highest rate of monitoring was from 9 A.M. to 4 P.M. Figure 4 displays the number of 
measurements made in the top 26 neighborhoods where more than 100,000 data points were collected, 
accounting for 76% of the total data set. Lincoln Park had the most measurements made with over three million 
data points. 
 

 
Figure 1: Number of measurements collected by ELPC team yearly, 2017-2021.  

Shows the most data was collected in 2019 and 2020. 

https://airqualitychicago.org/results/
https://airqualitychicago.org/results/
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Figure 2: Measurements collected by ELPC team, monthly, 2017-2021.  

Shows the most data was collected during the warmer months, especially July. 
 
 

 
Figure 3: Measurements collected by ELPC team, by time of day, 2017-2021. Shows the most data was collected 

in the morning and afternoons, especially 10am-12pm and 2pm-4pm. 
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Figure 4: Measurements collected by ELPC team, by the top 26 neighborhood, 2017-2021, accounting for 76% 
of all readings. Shows the most data was collected in Lincoln Park, followed by Little Village, Hyde Park, West 

Town, Humboldt Park, and Lakeview. 
 
 

 
 

Figure 5: ELPC data map shows the most documented neighborhoods in green, and least documented 
neighborhoods in red. Click to see an interactive map: Map of ELPC Data Collection in Chicago Neighborhoods. 
  

https://public.tableau.com/app/profile/pouyan.hatami/viz/MapofELPCDataCollectioninChicagoNeighborhoods/ELPCDataCollectionAcrosstheNeighborhoodsofChicago?publish=yes
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Figures 6 and 7, for instance, show the coverage and density (i.e., greater sampling) of ELPC's mobile air quality 
monitoring in the Little Village neighborhood, respectively. 

 
Figure 6: Map of Little Village neighborhood shows the geographic spread of Airbeam data collected by the 

ELPC team. Each red dot represents a measurement collected, and together they form a grid pattern tracing 
the neighborhood’s streets and sidewalks. 

 

 
Figure 7: Map of Little Village neighborhood shows the density of Airbeam data collected by the ELPC team, 

showing the most data was collected on Pulaski, Kostner, 31st and 26th streets, along with a cluster just south of 
Douglass Park. 
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Microsoft Stationary Sensors Data 

It is necessary to continuously monitor the air quality in order to comprehend the temporal variability of the air 
quality. This is obviously a difficult task for mobile air quality monitoring. Due to the fact that ELPC's air quality 
program was completely voluntary, there were also greater limits on consistently implementing a routine plan 
to cover the location and time of sampling. As a result, the required number of repetitions to accurately gauge 
the air quality at the hyperlocal level and identify hotspots was not always reached.  
 
Fortunately, since July 2021, the Project Eclipse Network (Daepp et al., 2022), owned and operated by Microsoft, 
has been continuously monitoring the air quality for three pollutants, PM2.5, O3 and NO2 in Chicago with over 100 
stationary sensors. The initiative makes use of a low-cost urban air quality sensing network and is through a 
partnership with the City of Chicago, the Array of Things Project, JCDecaux Chicago, the Environmental Law and 
Policy Center, and regional environmental justice organizations in the area. Figure 8 shows a map of the stations 
captured on March 30, 2022, at 6:57 PM.   

 
Figure 8: Stationary monitoring 
network, managed by Microsoft 

Research’s Project Eclipse, in 
partnership with the City of Chicago, 

the Array of Things Project, JCDecaux 
Chicago, and local environmental 

organizations. Screenshot captured 
March 30, 2022, at 6:57pm. 

 
The recorded data from Microsoft 
stations in this analysis helps capture 
the temporal variability of air quality in 
Chicago across different time scales, 
including daily and annually. As of 
December 31, 2022, over 15 million data 
points have been recorded by the 
stations.  
 

Spatiotemporal Variability 
Assessment 

The Microsoft data is available via the 
Spatiotemporal Asset Catalog (STAC) 
API provided by Planetary Computer. 
We selected the entire dataset of 122 
stations in 2022, where 10.23 million 
data points were recorded. However, not all stations operated 100% of the time in 2022, and the percentages 
varied significantly. According to statistical guidance articles, analyses that have over 10% missing data are likely 
to exhibit bias (Dong & Peng, 2013; Jakobsen et al., 2017). To minimize bias in our analysis, we retained only the 
data from the stations with operating hours over 90% in 2022, leaving us with 67 stations. We divided the analysis 
of these 67 stations into daily and annual periods. 

https://urban.microsoft.com/air/city/chicago
https://urban.microsoft.com/air/city/chicago
https://planetarycomputer.microsoft.com/dataset/eclipse#overview


 

8 
 

For the daily analysis, we calculated the daily PM2.5 of all the stations and filtered those above the current daily 
threshold of 35 µg/m³. Our results show that in 2022, three stations located in South Side Chicago exceeded this 
threshold on 50 days, all of which occurred in September and October. The map below shows the locations of 
these stations. Of concern is that on these 50 days, the PM2.5 concentrations ranged from 68.9 to 226.4 µg/m³, 
with an average of 175.75 µg/m³, which is significantly above the daily threshold of 35 µg/m³. 

It should be noted the EPA defines its daily PM2.5 standard as the 98th percentile of 24-hour concentrations, 
averaged over a 3-year period, with a threshold of 35 µg/m^3. In the context of this study, due to the availability 
of only one year of air quality data from Microsoft stations, a simplified approach was adopted. Instead of 
applying the 98th percentile method, each day's average daily PM2.5 concentration that exceeded 35 µg/m^3 was 
reported for each site. It is important to emphasize that while this method captures every exceedance of daily 
PM2.5 levels, it does not align directly with the EPA's traditional compliance assessment method. The choice was 
made in light of data constraints. This study was primarily aimed at raising awareness about the instances of 
elevated daily PM2.5 levels during the monitored year.  

Figure 9: Map of Chicago shows three stationary monitoring 
stations exceeded the EPA daily standard 35 µg/m³ on 
Chicago’s South Side, meaning these areas are not in 

compliance with federal regulatory standards. 

For the annual analysis, we calculated the PM2.5 levels for all 67 
stations with more than 90% operating hours. None of these 
stations had an annual PM2.5 above the current threshold of 12 
µg/m³. 
 
Furthermore, we examined the monthly PM2.5 variation across 
different stations to identify any specific areas of the city with 
heightened monthly pollution levels. Figure 10 displays the 
monthly PM2.5 levels exceeding 12 µg/m³ at various stations. The 
absence of the first three months of the year in the figure 
suggests that these months are generally cleaner. However, as 
the weather warms up, more stations begin to exhibit monthly 
PM2.5 medians above 12 µg/m³. Table 1 reveals that 33 stations 
had a monthly PM2.5 median exceeding 12 µg/m³ in July. As 
depicted in Figure 11, the dispersion of these stations 

throughout the city implies that air quality across the entire city in July might be somewhat worse than during 
the rest of the year. With 21 stations, August is the second-most polluted month. It is also worth noting from the 
map in Figure 11 that the majority of the stations are situated on the South and West Sides of Chicago.
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Figure 10: Stationary monitor locations where particulate matter readings exceeded 12 µg/m³, per month. Months are listed by numbers across the 
top, bus stops where the monitors were installed are listed along the bottom. Shows major exceedances at Chicago & Cicero, 63rd & State, and 106th 
& Ave D in particular.
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Table 1: Stationary 
monitor locations 
where particulate 
matter readings 
exceeded 12 µg/m³ 
throughout the 
month.  

Shows the most 
locations had poor 
air quality in July. 
Also shows that there 
were consistent 
problems at Chicago 
& Cicero, where air 
levels were high for 
seven months of the 
year. Stations where 
PM exceeded 12 
µg/m³ for five months 
include 63rd & State 
and 111th & Halsted. 
Stations where PM 
exceeded for four 
months include 106th 
& Ave D and Addison 
& Kennedy XWay. 

 

Station Name/Month April May June July August September October November December Count 

106th & Ave D (WB)    1 1 1  1  4 

111th & Ellis (WB)    1      1 

26th & Central Park (WB)    1 1     2 

26th & Keeler (EB)    1 1     2 

26th ST & Kostner (WB)       1   1 

47th & Halsted (WB)    1      1 

61st & King (WB)    1 1     2 

63rd & Lamon (EB)    1      1 

63rd & Peoria (EB)    1      1 

63rd & Pulaski (EB)    1 1     2 

63rd St & State 13 E (EB)   1 1 1 1 1   5 

87th & Western (WB)    1      1 

Addison & Kennedy XWay (EB)    1 1  1 1  4 

Archer & Lavergne/LeClair (NEB)    1      1 

Ashland & 37th (SB)    1      1 

Ashland & 43rd St (SB)    1 1     2 

Ashland & Blackhawk (NB)    1 1     2 

California & 26th (SB)    1      1 

California & Cermak (NB)    1      1 

California & Cermak (SB)    1    1  2 

Central & Prescott (SB)    1      1 

Central Park & Ogden (NB)     1     1 

Chicago & Cicero (EB) 1 1 1 1 1  1  1 7 

Chicago & Hudson (WB)    1 1     2 

Cicero & Hubbard (NB)    1      1 

Cottage Grove & 49th St (SB)       1   1 

EPA Cicero A 1         1 

Halsted & 111th (SB)    1 1 1 1 1  5 

Halsted & 87th (SB)    1 1     2 

Kedzie & 24th (SB)    1 1     2 

Laramie & Lake (NB)    1      1 

Madison & Wood (WB)     1     1 

Nargansett & Montrose (SB)    1 1     2 

Polk & L "Above" (WB)    1 1     2 

Pulaski & 49th (SB)    1 1     2 

Pulaski & 71st (SB)    1 1     2 

Roosevelt & Western (WB)    1      1 

State & 83rd (NB)         1 1 

Stony Island & 89th St (NB)   1       1 

Western Ave & 43rd St (SB)    1 1     2 

Total 2 1 3 33 21 3 6 4 2 75 
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Figure 11: Chicago map shows all the stations that exceeded 12 µg/m³ in July, with brighter red dots indicating 
higher levels than grey dots. Purple layer across Chicagoland indicates median household income in that area.  
 
We also analyzed the spatial and temporal variability of PM2.5 across all data collected in Chicago at diverse time 
intervals, such as hours of the day, days of the week, and months of the year. This encompasses the entirety of 
measurements taken within the city during specific time intervals. This analysis will enable us to design a more 
effective mobile air quality monitoring system and furnish us with a comprehensive understanding of how 
pollution fluctuates across various time frames and locations. Figure 12 displays the hours-of-the-day variation 
of PM2.5 for the entire dataset, encompassing all stations collectively. There is no substantial distinction in the 
median values across different hours; however, the period from 12 PM to 2 PM exhibits slightly elevated pollution 
levels. Figure 13 presents the day-of-the-week variation of PM2.5. Similar to the hours-of-the-day variations, no 
significant distinctions in the values are observed; however, Tuesdays and Wednesdays tend to experience 
higher pollution levels. Figure 14 illustrates the variations in PM2.5 levels across different months of the year. 
Notably, the two months with the highest pollution levels are July and August. 

 
Figure 12: Median PM2.5 readings during each hour of the day across the stationary monitor network. Shows no 
substantial distinction between hours, but there is a slight improvement in air quality between 5am-11am, and a 

slight rise in the early afternoon. 
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Figure 13: Median PM2.5 readings 

during each day of the week, 
across the stationary monitor 
network. Shows no substantial 
distinction between days, but 

there’s a slight improvement on 
Sunday and Friday, while Tuesday 
and Wednesday have a bit more 

PM. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 14: Median PM2.5 readings during each month of the year, across the stationary monitor network. 

Shows no substantial distinction between months, but slightly higher PM levels in July and August.  
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Random Data Sampling: A Method to Quantify the Number of Sampling Repeats 

As previously discussed, determining the number of repeat visits needed to achieve a meaningful approximation 
of the spatial air quality pattern in a specific area is a crucial consideration for mobile monitoring. The challenge 
arises from the fact that the target air pollution variable and locational factors can influence the required number 
of repetitions. As a result, Chicago may not consistently benefit from suggestions made by studies conducted in 
other regions. 

In this section, we describe the development of a method to calculate the number of Chicago-specific sampling 
repetitions for mobile monitoring, utilizing the data from Microsoft stations. As previously mentioned, stationary 
sensors are ideal for measuring the temporal variability and long-term patterns of air pollution, which allows us 
to learn from the station data and develop an efficient and effective approach for mobile monitoring. We started 
by assuming that each station represents the air quality of a block with dimensions of 420 feet by 680 feet, 
equivalent to the average size of a city block in Chicago. For each station, we selected a range of one to a hundred 
hours of data, ensuring that no two hours of data originated from the same day of the year. The primary goal of 
this approach is to determine the point at which we can be confident that we have achieved a certain level of 
accuracy regarding the annual PM2.5 at a given location in mobile monitoring, by comparing the samples in that 
block to the annual PM2.5 of that block. This process involves incrementally sampling one hour a day for up to a 
hundred days and evaluating the progression of the data collected. As a reminder, we utilized data from 67 
stations that had over 90% operation time in 2022 to minimize bias in measuring their annual PM2.5.  

Moreover, mobile monitoring at the Environmental Law & Policy Center (ELPC) has typically been conducted 
during the warmer months of the year, mainly due to factors such as volunteer availability and the limited 
functionality of AirBeam devices under extreme weather conditions. To account for this, we divided random 
sampling into two separate yearly subsets of data: one spanning from May to October, and the other from June 
to August, both restricted to the hours between 8 AM and 8 PM to closely align with the actual implementation 
of mobile monitoring. Subsequently, we investigated the point of repetition at which sampling accuracy was 
most reliable within these timeframes. 

To assess the performance and proximity of the sampling repeats to the annual PM2.5, we employed three 
different metrics: Firstly, for each sample of every station, we measured the absolute error percentage between 
the sample median PM2.5 and the station's annual PM2.5. Next, we calculated the average absolute error 
percentage for all 67 stations for each sample size, ranging from one to a hundred. 

Eᵢ(x) = | (sᵢ - aᵢ) / aᵢ | × 100 
A(x) = (1/n) × Σ Eᵢ(x) for i=1 to n 

Where: 

• Eᵢ(x): Absolute error percentage for station i with sample size x 
• sᵢ: Sample median PM2.5 for station i 
• aᵢ: Annual PM2.5 for station i 
• x: Sample size (ranging from 1 to 100) 
• A(x): Average absolute error percentage for all stations with sample size x 
• n: Number of stations (in this case, n = 67) 

In addition to the annual PM2.5 of the stations, another piece of information to consider is their standard 
deviation. Standard deviation is an important statistical measure because it provides insight into the dispersion 
or spread of a data set. By quantifying the degree of variation from the mean, it helps in assessing the data's 
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consistency, reliability, and potential outliers. The annual PM2.5 values for all the stations range from 7.52 to 11.15 
µg/m³. Apart from two stations with notably large standard deviations of 37.85 and 42.65, the remaining 65 
stations exhibit standard deviations between 2.27 and 4.07, which still constitute a significant proportion of their 
annual PM2.5 values. Consequently, the first metric used to compare the samples and annual PM2.5 levels is 
insufficient for a comprehensive analysis of sampling accuracy. Therefore, we also employ the second metric, 
the coefficient of variation (CV), to further assess the data.  

The coefficient of variation (CV) (Brown, 1998) is a valuable statistical measure that quantifies the dispersion of 
a data set relative to its mean. Expressed as a percentage, CV is particularly useful when comparing the variability 
of data sets with different units of measurement or disparate means. By standardizing variability as a proportion 
of the mean, the coefficient of variation enables meaningful comparisons between data sets that may otherwise 
be difficult to assess. Lastly, the third metric, Quartile Coefficient of Dispersion (QCD) (Bonett, 2006) a measure 
of relative dispersion, specifically for non-parametric data or data sets with outliers. It is based on the 
interquartile range (IQR), which represents the range between the first quartile (25th percentile) and the third 
quartile (75th percentile) of a data set. QCD is calculated by dividing the IQR by the sum of the first and third 
quartiles and is expressed as a decimal value or a percentage. Both CV and QCD are measures of relative 
dispersion. We follow the same method for calculating the mean absolute error percentage for the coefficient 
of variation (CV) and the quartile coefficient of dispersion (QCD) as we did for the median. For CV: 

CVᵢ(x) = (σᵢ(x) / µᵢ(x)) × 100 
E_CVᵢ(x) = | (CVᵢ(x) - CV_annualᵢ) / CV_annualᵢ | × 100 

CV_avg(x) = (1/n) × Σ E_CVᵢ(x) for i=1 to n 

Where: 

• CVᵢ(x): Coefficient of variation for station i with sample size x 
• E_CVᵢ(x): Absolute error percentage for station i with sample size x 
• σᵢ(x): Standard deviation of PM2.5 for station i with sample size x 
• µᵢ(x): Mean of PM2.5 for station i with sample size x 
• CV_avg(x): Average coefficient of variation for all stations with sample size x 
• n: Number of stations (in this case, n = 67) 

 
and for QCD: 

QCDᵢ(x) = (Q₃ᵢ(x) - Q₁ᵢ(x)) / (Q₃ᵢ(x) + Q₁ᵢ(x)) 
E_QCDᵢ(x) = | (QCDᵢ(x) - QCD_annualᵢ) / QCD_annualᵢ | × 100 

QCD_avg(x) = (1/n) × Σ E_QCDᵢ(x) for i=1 to n 

Where: 

• QCDᵢ(x): Quartile Coefficient of Dispersion for station i with sample size x 
• E_QCDᵢ(x): Absolute error percentage for station i with sample size x 
• Q₁ᵢ(x): First quartile of PM2.5 for station i with sample size x 
• Q₃ᵢ(x): Third quartile of PM2.5 for station i with sample size x 
• QCD_avg(x): Average Quartile Coefficient of Dispersion for all stations with sample size x 
• n: Number of stations (in this case, n = 67) 



 

15 
 

The performance assessment results, based on three metrics for both data subsets, are illustrated in Figures 15, 
16, and 17. It is important to note that the number of unique days for the June to August subset is capped at 92, 
while the May to October subset has sufficient days to reach 100. When comparing the mean absolute error 
percentages of the medians, a clear separation between them is not evident as sample sizes increase, until nearly 
50 where the blue line begins to display smaller errors. In contrast, the other two metrics—CV and QCD, which 
indicate dispersion—reveal a different narrative. As observed, the longer the data subset (i.e., May to October), 
the less dispersion there is between the samples and the annual PM2.5. For CV, the May to October subset 
consistently falls below 20% error at approximately 25 samples, while for the June to August subset, this occurs 
at roughly 45 samples. Regarding QCD, the May to October subset drops below 20% at nearly 20 samples, 
whereas for the June to August subset, considerably more sampling, close to 60, is required. 

For the May to October subset, the 
average error percentage experiences a 
significant decrease after approximately 
five samples, with a PM2.5 error of nearly 
15% (accompanied by a 30% dispersion 
error). As the number of repetitions 
increases, the error further reduces: 
between 10 and 15 repetitions (with 
dispersion errors ranging from 26% to 
20%), the error remains around 10%; 
between 15 and 30 repetitions (with 
dispersion errors from 20% to 15%), it 
averages about 7.5%; and from 30 to 100 
repetitions, the error varies from 6% to 
3.5% (with dispersion errors between 15% 
and 10%). 

Figure 15: Performance assessment results, based on the median  
 

 

Figure 16: Performance assessment results, based on Figure 17: Performance assessment results, based 
the coefficient of variation (CV)    on the quartile coefficient of dispersion 
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Exploring the Impact of City Zoning on PM2.5 Concentrations: The Role of Parks and Open Spaces 

In this air quality research project, we investigate the variations in particulate matter (PM2.5) levels across 
different city zoning. The study encompasses 67 sensor stations, each providing annual PM2.5 data, and examines 
the spatial distribution of nine zoning types: Business, Commercial, Downtown, Residential, Manufacturing, 
Planned Development (PD), Planned Manufacturing Development (PMD), Parks and Open Spaces (POS), and 
Transportation. We generated buffers at radii of 1/4 mile, 1/2-mile, 1 mile, and 2 miles around each sensor station, 
subsequently calculating the area percentages of each zoning category within these buffers.  

Figure 18: Screenshot of a city map showing 
stationary monitors as green plus signs, with 
buffer rings drawn around each. Within these 

rings, we calculated the proportion of each 
zoning type and measured the correlation with 

the air quality recorded at that station. 

To establish potential correlations between 
PM2.5 concentrations and zoning areas, we 
employed Pearson's correlation coefficient as 
our statistical measure, using a significance level 
of P=0.05. This approach enabled us to 
quantitatively assess the strength and direction 
of the relationships between the variables under 
consideration. 

Our findings provide valuable insights into the 
spatial distribution of PM2.5 in relation to city 
zoning and traffic patterns. We found that 
annual PM2.5 levels were significantly correlated 
only with the Parks and Open Spaces (POS) 
zoning category. At a 1/4-mile radius, the 
correlation coefficient was -0.384, indicating a 
moderately negative relationship between PM2.5 
levels and the percentage of POS areas. 
Interestingly, this correlation became slightly 
stronger at a 1/2-mile radius with a coefficient of 
-0.427, suggesting that the influence of POS on 
PM2.5 concentrations was more pronounced 
within this distance. However, as the radius increased to 1 mile, the correlation weakened to -0.358. 

Although correlation doesn’t imply causation, these findings imply that the presence of Parks and Open Space 
zoning might be a contributing factor in reducing PM2.5 concentrations especially within a half-mile radius. 
Beyond this distance, the correlation begins to weaken, suggesting that the benefits of POS in mitigating air 
pollution diminish as the radius expands. This observation highlights the importance of strategically placing parks 
and open spaces in urban areas to maximize their potential for improving air quality. 
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Analysis of Mobile Air Quality Monitoring Data: A Confidence Map 

We utilized the findings from the previous sections to analyze data obtained through our mobile air quality 
monitoring efforts. To accomplish this, we first generated rectangular grid cells, measuring 420 by 680 feet, 
across the Chicago area using the ArcGIS Fishnet Tool. Subsequently, we employed a spatial join to match the 
points from the air quality measurement layer to the target grid cell polygon output layer. For each grid cell, we 
counted the number of unique measurement days and calculated the median PM2.5 value of all the recorded 
measurements. Grid cells with fewer than five unique days were excluded, as the limited number of 
measurements was insufficient to accurately represent the air quality within those cells. The remaining grid cells 
were then categorized as follows: 

• 5 to 9: Unconfident – A good start, but additional sampling days are needed  
• 10 to 14: Relatively Confident – Very close, but a few more sampling days are needed 
• 15 to 29: Confident - No immediate need for more sampling, but additional data could increase 

confidence 
• 30 and above: Very Confident – No 

further sampling is necessary 

Figure 19 presents a grid cell in which we 
have high confidence in the measured PM2.5 
value of 19 µg/m³. Figure 20 depicts the 
results of the analysis in which we have 
covered a 35.7-square-mile area within 
Chicago, which represents 15.2% of the city's 
total land area of 234.5 square miles. For a 
more detailed examination, you can access 
the interactive map here: Interactive Map. 

Figure 19: Map indicates a grid cell above 19 µg/m³ west of Halsted Ave, between Ohio and Erie 

 

Figure 20: Full grid cell map of Chicagoland confidence map. Red indicates unhealthy air. See full interactive 
map here. 

https://public.tableau.com/app/profile/pouyan.hatami/viz/ELPCMobileAirQualityMonitoringAConfidenceMap/ConfidenceMap?publish=yes
https://public.tableau.com/app/profile/pouyan.hatami/viz/ELPCMobileAirQualityMonitoringAConfidenceMap/ConfidenceMap?publish=yes
https://public.tableau.com/app/profile/pouyan.hatami/viz/ELPCMobileAirQualityMonitoringAConfidenceMap/ConfidenceMap?publish=yes
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Recommendations: 

Here are some suggestions to improve mobile air quality monitoring based on the insights gained from this 
study: 

• To ensure a consistent sampling rate, conduct monitoring only while walking. 
• Number of repeats: For annual PM2.5 levels, a minimum of 30 hours per route is recommended, spread 

over 30 different days of the year. Divide the route into two halves, with each half covered in 30 minutes, 
while the second 30 minutes is spent returning to the starting point. Choose a route so that every point 
is measured twice, regardless of the route length. 

• Hours: Sampling can be done at any hour, but it should not be limited to a single hour of the day. Spread 
sampling between 8 A.M. and 8 P.M. 

• Days: Sampling can be conducted on any day of the week, but it should not be limited to a single day of 
the week. 

• Months: Spreading data collection between May and October increases the likelihood of obtaining 
results closer to the annual PM2.5 levels at the locations. 

• To identify shorter term pollution levels such as daily PM2.5 spikes above the EPA threshold (35 µg/m³), it 
is more likely to observe such days in July, during Tuesdays and Wednesdays, around noon to afternoon. 
Spatially, there is a higher likelihood of finding hotspots on the West Side and South Side of Chicago. 
However, the South Side has also exhibited daily spikes in September and October. 

• Location: Hotspots are more likely to be found in areas without parks within a half-mile radius. 
• Data from the station at the intersection of W Chicago Ave and N Cicero Ave indicates higher pollution 

levels than at other stations. We recommend further mobile monitoring in this area to gain additional 
insights. 

• From the provided Interactive Map, based on the provided map, continue monitoring the "Unconfident", 
"Relatively Confident", “Confident” areas with PM2.5 levels above 12 µg/m³. Ensure that the minimum 
requirement of 30 hours-30 days is met for each of these locations. By doing so, you can increase the 
accuracy and confidence of the measurements in these areas, leading to a better understanding of the 
air quality and potential hotspots. 

https://public.tableau.com/app/profile/pouyan.hatami/viz/ELPCMobileAirQualityMonitoringAConfidenceMap/ConfidenceMap?publish=yes
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